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The linear boundary-layer analysis by Stewartson & Roberts (1963) and by 
Roberts & Stewartson (1965) for the motion of a viscous fluid inside the spheroidal 
cavity of a precessing rigid body is extended to include effects due to the non- 
linear terms in the boundary-layer equation. The most significant consequence 
is a differential rotation super-imposed on the constant vorticity flow given by 
the linear theory. In  addition it is shown that a tidal bulge of the cavity forces a 
fluid motion similar to that caused by the precessional torque. The relevance of 
both effects for the liquid core of the earth is briefly discussed. 

1. Introduction 
Among the problems of fluid flow in rotating systems, the motion of a viscous 

fluid inside a precessing spheroidal shell has attracted special interest, not only 
because of its relevance to geophysical and astrophysical questions but also be- 
cause of its unusual properties. Although the geometry of the problem is simple 
and only a few parameters enter into its physical description, it shows a number of 
interesting and often unexpected phenomena. Many of these, especially those 
with non-stationary and turbulent structure, can be investigated only experi- 
mentally at  the present time. For the experimental investigation of the problem 
we refer to the forthcoming paper by Malkus (1968). In  the present paper we are 
concerned with the theoretical description of the laminar flow, which is stationary 
in the frame of reference which rotates with the precession rate. 

A detailed analysis of the mathematical problem has been given by Roberts &, 
Stewartson (1963, 1965). In their second paper they derive an exact solution of 
the Navier-Stokes equation of motion under the assumption that the flow has 
constant vorticity. This solution does not, however, satisfy the non-slip con- 
dition at  the rigid boundary. In  a different approach Roberts & Stewartson use 
boundary-layer methods restricting the analysis to small amplitudes for which 
the boundary-layer equations can be linearized. In  accordance with their first 
solution, they conclude that the interior flow has constant vorticity. It will be 
shown that this conclusion is not valid for finite amplitudes. A differential rota- 
tion of the interior fluid body is caused by the non-linear advection of the 
boundary-layer velocity field. Hence the exact solution of the equations of 
motion by Roberts & Stewartson is not approached in the limit of vanishing 
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viscosity. For this reason the precessional problem, in which the direction of the 
rotation vector of the container varies, differs considerably from the so-called 
spin-up problem in which only the rate of rotation is changed. While in the latter 
case it has been concluded by Greenspan & Weinbaum (1965) that the finite- 
amplitude results differ only quantitatively from the results given by the linear 
theory, qualitatively new effects are introduced due to the non-linear terms in the 
precessional problem. 

After formulating the problem and the method of solution in 9 2 we shall 
recapitulate the results of the linear theory in 93. The differential rotation 
superposed on the constant vorticity flow given by the linear theory will be 
derived in $4. In 95 we shall show that the action of a tidal bulge of the shell is 
similar to that of the precessional force. A short discussion of the relevance of 
both effects for the earth’s core is given in Q 6. 

2. The mathematical formulation of the problem 
We are considering the stationary flow of an incompressible fluid inside a 

spheroidal shell which is rotating about its axis with the constant angular ve- 
locity o, relative to a rotating frame of reference. The constant angular velocity 
w,S2 of the frame of reference corresponds to the precession rate with which the 
axis of the shell precesses relative to the inertial space. We introduce the radius a 
of the spheroidal cavity perpendicular to its axis as length-scale and w,a as scale 
for the velocity. In  this dimensionless description the angular velocity of the 
container is given by the unit vector k, and S2 is the angular velocity of the ro- 
tating fra,me of reference. The equations for the fluid velocity vector q are 

v . q  = 0, 

%!Xq+q.Vq = -Vp+EV2q. (2.1) 
The kinematic viscosity v enters the equation in the definition of the Ekman 
number, E = v/w,a2. 

In  the following discussion of (2.1) together with the viscous boundary con- 

dition q = k x r  onC, (2.2) 

we will assume that the viscosity is small, and hence neglect to the first order the 
viscous term outside a thin boundary layer close to the wall. According to this 
boundary-layer assumption, the velocity vector is given by 

q = q i + 4 ,  (2.3) 

where q, describes the velocity field throughout the interior while tj is the addi- 
tional boundary-layer velocity vector which is non-vanishing only in a thin 
layer close to the wall and exponentially decreasing toward the interior. For a 
general formulation of the boundary-layer method for the solution of the equa- 
tions in a rotating system, we refer to Greenspan (1965). Using his notation we 
assume the following expansion for qi and tj in powers of J E :  
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and an analogous expansion for the pressure p = pi + j5. This expansion can lead 
to divergent results at certain singular points as will be shown later. The local 
divergence of the boundary layer will not change, however, the general analysis. 

According to the boundary-layer assumption, the variation of boundary- 
layer solution ij in the direction normal to the boundary is of the order E-* larger 
than in the directions parallel to the boundary. Hence it is convenient to intro- 

where rs is the position vector on the surface X, and n is the unit vector normal to  
C pointing outward. Using 5 the continuity equation for 4 can be written 

duce the co-ordinate 6, 6 = (r,$ - r) . nE-4, (2 .5 )  

a 
86 

0 . Q  = -E-g-Q.n+n.V:<(nxq)-nxQ.Vxn+n.QV.n = 0. (2.6) 

The physical aspect of the problem becomes evident in the torque balance 

B/(Rxq)xrdV+ nxrpdx = E (n.Vqxr-2nxq)dC, (2.7) 

which shows that the pressure as well as the viscous stresses exerted by the 
boundary can balance the precessional force. In  the case of a spherical cavity the 
pressure term vanishes. Another torque balance can be obtained by extending the 
integrals over the interior body of the fluid only and neglecting the dissipative 

$ I 

2 ( n ~ q , ) x r d V +  (2.8) s term, 

Since the normal derivative at  the boundary is of the order EE-*, where E is the 
amplitude of the boundary-layer flow q, the right-hand sides in (2.7) and (2.8) are 
of the order EJE. Hence in general part of the Coriolis force is balanced by terms 
ofthe order JE. Without specifying this part we write the equations for the lowest 
order of the interior flow in the form 

(2.9) 

The term F(q,) will appear as an inhomogeneous term in the equation of ql. The 
boundary condition for q, is q,. n = 0 on C, since it can be concluded from 
continuity equation (2.6) that n . a, vanishes. 

With the general, as yet not completely determined, solution of (2.9) we enter 
the equation for the boundary-layer flow q, 

(2.10) 
a a 2  

2 a x  ~ , + ~ Q o + ~ o ~ . ~ ~ o + 4 o . V ~ ,  = " - l i l + @ Q O ,  a6 
which has to be solved subject to the boundary condition Po+ q, = k x r. The 
integration of the continuity equation (2.6) with respect to gin general leads to a 
non-vanishing value of ql. n at the boundary, 

ii1."15=0 = - n.V x (n x ij,)dc. (2.11) 

Hence the solution q, of the interior equations in the order J E ,  
v.q,  = 0, 

2Qx ~1+~rJ .Vq,+q , .Vq ,+~P1=  -F(qo)7, 
(2.12) 
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has to satisfy the boundary condition n. (ql + 4,) = 0 on 2.  Since J E  usually is 
sufficiently small, the equations (2.12) do not have to be solved explicitly. The 
solvability condition for the inhomogeneous linear boundary-value problem 
(2.12), however, is essential for the determination of the solution q,. By multi- 
plying the second equation (2.12) with the complete set of solutions of the 
corresponding adjoint homogeneous problem and integrating it over the con- 
tained fluid, a necessary and sufficient condition is obtained for the existence of 
the solution q,. This condition provides the additional information necessary for 
the determination of q,. It will be shown later that the solvability condition 
includes the torque balance (2.8) as a special case. 

Although the problem in the present formulation can be solved in principle, 
the non-linear boundary-layer equation prohibits a simple analytical solution. 
Therefore, we will restrict ourselves to small amplitudes E of the boundary-layer 
flow and assume, in place of the single expansion (3.4), the double expansion 

with qt) = k x r. (3.14) 

A similar expansion has been used by Greenspan & Weinbaum (1965) for the 
time-dependent spin-up problem of a contained fluid. 

In  the following section, we will discuss the linear problem explicitly in the 
case of a spheroidal cavity given by 

(3.15) 

We are interested only in the first-order effects due to the eccentricity and 
assume that the ellipticity 7 is small compared with one. To avoid another formal 
expansion in powers of 7 and because the parameters 7 and J E  occur parallel in 
the problem according to the torque balance (3.7), we shall treat the dependence 
of the problem on 7 on the same level as that on JE.  In  8 4 the effects due to the 
non-linear term 4,. 04, in the boundary-layer equation are considered. 

3. The linear boundary-layer problem 
Anticipating the result that the solvability condition in the order J E  E can be 

satisfied by a solution qbl) with constant vorticity, we will not start with the most 
general solution of the equations (3.9), but assume 

kxr+sqbl)= w x r  (3.1) 

with an arbitrary vector w. This solution does not satisfy the boundary con- 
dition n . qf) = 0 exactly. However, (w - k) x r. n is of the order €7 and thus can 
be added in the boundary condition for q;”. The part J E F  of the precessional 
force which cannot be balanced by the pressure and which will be taken into 
account in the equation of the order EJE is given by (8 x w) x r. 

It is convenient to include the term with Eqf’in the first order of the boundary- 
layer equations and to write 

(3.2) 
a 2  251 x @)+(w x r).VQf) = n- a pl +-(I) +a52qo - -(I)* 

ac 
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By multiplying (3.2) with n x and -in x (n x and adding the two results, we 
obtain 

+ 0). n (n x ail)+ i4i1)) = [n x - in x (n x ] ((0 x r) . V q f ) -  w x qbl)). 

(3.3) 
1 - a 2  I@- 

The solution of this equation which satisfies the boundary condition 

is given by 

n x qf)+i&]-) = (n x (w+ x r)+iw+ x r)exp ( - K + C ) +  (n x (0- x r) +iw- x r) 

BQS) = (k- w) x r 

with 
w x ( w x k )  w x k  

2w 8 2ws . 
w & = - - - 7 + i -  

As the appropriate definition for the amplitude s of the boundary velocity, we 
have assumed s2 = (k-  The coefficients K+, K- ,  K are determined by the 
relations 

(3.5) 

which are derived from (3.3) using the formula 

[(w x r) . V - w x ] (n x (wi x r) + iw, x r) = + iw  (n x (wi x r) +- iw, x r) (3.6) 

and neglecting terms of the order l(Q x w) x rl in consistency with the approxi- 
mation. According to the boundary-layer assumption, the root with positive 
real part has to be chosen for K+, K-, and K. 

The influx from the boundary is given according to relation (2.11) by 

+c.c., (3.7) I k .w n x ( w x r ) + i o x r  
-(l--) - -€2K 

where the summation is to be extended over the two possibilities + and - of the 
index and C.C. stands for the complex conjugate. The expression (3.7) enters the 
boundary condition for the equations of the interior in the order , / E  s together 
with the unsatisfied part of the boundary condition in the order EO, 

2Q x q\')+ (w x r) . Vq',l)+ w x qil) = - Vpil) - (Q x w) x r( l / J E  s ) ,  (3.8) 

n.q\')= -n.a:1)15=0-(1/JE€)oxr.n on E. 

By multiplying (3.8) with the solutions q H  of the corresponding homogeneous 
problem 

(3.9) 
2!2 x q H +  (0 x r).  V q ,  + x q H  = -VpH, 
n.qH = 0 on X, 

we obtain the solvability condition for the problem (3.8) 

(3.10) 
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A solution of (3.8) exists when relation (3.10) is satisfied for all solutions qH of 
the problem (3.9). An approximate solution of (3.9) is given by 

qH x w * x r ,  pH x ( w * x r ) . ( w x r )  (3.11) 

with an arbitrary vector w*. Since this solution does not fulfil equation and 
boundary condition (3.9) exactly, we find by repeating the derivation of the 
solvability condition with the choice (3.11) for qH that the terms 

2 Q x (w* x r) . qil)dV - a* . r x npil)dS s 16 
have to be added on the right side of (3.10), in which qH and p H  have been re- 
placed according to (3.11). With this addition we rewrite the condition (3.10) in 
the following form using the boundary condition (3.8) for qll): 

c ,/E w* . { q ~ )  . n ~ . + ~  (w x r )  x r d x  - 2 1 (Q x qi1)) x r d  V ]  

= W* . (f n x r (4 o x r12 + E,/E pi1) [(Q x w) x r] x r d V (3.12) 

Since w* is an arbitrary vector, the comparison with (2.8) shows that (3.12) 
describes the torque balance for qi = w x r + E J E  q"). 

The vector multiplied by w* on the right side of (3.12) is of the order EJE 
according to the torque balance. When w* is chosen equal to o, the right side 
of (3.12) vanishes in the special case r = 0 of a spherical cavity. Hence in the 
general case the right side is of the order B J E E ~  for a* = w since the ellipticity 
enters the problem in the combination €7. The left side of (3.12) can be evaluated 
for w* = w in the following way: 

. n x (w x (w x r))dI: 
E 2k' 

+terms of the order t:.max(dE, 171). (3.13) 

Since the last integral in (3.13) is of the order 1, the solvability condition (3.12) 
with w* = w requires 

~2 = k . o ,  (3.14) 

and hence €2 = 1 - ( 0 2 ,  (3.15) 

where terms not larger than of the order c2. max (dE,  I ) have been neglected. 
The physical interpretation of (3.14) is that in a stationary state the component 
of the angular velocity of the container parallel to the angular velocity w of the 
fluid has to be equal to w in order that no spin-up process occur. The relation 
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(3.14) determines w completely in the case where s2 is of the order 1.  Since 
Iw x 81 is of the order e.  max (JE, Iql), o has to coincide with the precession axis 
to the approximation in which the equations have been considered. o will be 
parallel or antiparallel to S2, depending on the sign of k .  S2 according to (3.14). 

Additional information is needed to determine w when 52 is a small quantity 
like JE or y. In  this case the term with S2 x qi’) can be neglected in (3.12) as well 
as the term with pi’), and two independent relations are given by the real and 
imaginary parts of (3.12) when w* is chosen equal to o+. The right side of (3.12) 
yields 

(o+ x r ) . o  x (o x r ) d V -  (o+ x r) . (Q x o) x rdV s s 
= - 477 ZiwS2. W+ + - 4n i ~ s w ~ .  k. (3.16) 

15 15 

Consistent with the approximation we have neglected higher-order terms by 
extending the first integral over a spherical volume. In  the same approximation 
the integral on the left side of (3.12) yields 

. {n x (20 x (o+ x r) + iww, x r ) )dC 

35 
6 427 

35 

Using the results (3.16) and (3.17) the solvability condition 
form 

w x k  . o x ( w x k )  
+ $ . ) = 2*62(Ew)g + i(0.259(Ew)d 

we2 

(3.17) 

(3.12) assumes the 

+yw(w.k)). (3.18) 

This relation together with equation (3.14) determines 

02(k x S22*62(Eo)t) + w2k x (a .- x k)(0.259(E/o)t+ yw2 + a) .  k). 
(0*259(E/w)* + T,W’ + S2. k)2 + 2*6Z2Ew 

w = k&+-  

(3.19) 

This result holds to the order c2 since the only term, Q . VQ, of the order €2 which 
has not yet been considered does not affect the direction of o because it is either 
axisymmetric or doubly periodic around the axis w. Thus the critical circles 
K+ = 0 and K- = 0, at which the boundary-layer thickness tends to infinity, occur 
with respect to the w-axis instead of the k-axis as in the linear theory. The 
mathematical problem caused by this singularity has been discussed by Stewart- 
son & Roberts (1963). They conclude that the boundary-layer thickness changes 
from the order Eh to the order Eg at the critical circles and that accordingly the 
influx into the interior from this region is small compared with the influx from 
the rest of the boundary. 

Since the second term on the right side of (3.19) is of the order 8, it is consistent 
to replace w by 1 in this term, in which case the expression becomes identical with 
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the results of Roberts & Stewartson (1965). Qualitatively, however, the direction 
of w is described by (3.19) to the order €3 since the basic balance (3.18) is not 
changed by terms of this order which have been neglected. For this reason w 
does not diverge in the limit when 2/E and rlz . k + 7 tend to zero. The condition 
that E is a small quantity can be derived from (3.19) in terms of the given para- 
meter of the problem, 

(3.30) 

where a is the angle between 8 and k. Since the non-linear effects up to the 
order e2 have been taken into account, this inequality does not have to be satis- 
fied in a very strong sense. 

The direction of w can be visualized best in the case of the spherical cavity. 
Equation (3.18) shows that for 7 = 0 the direction of w varies as a function of 
J E / Q  along a cone of nearly half-circular shape as far as 0,259 is small compared 
with 2.62. The edges of the cone corresponding t o  the end-points of the half- 
circle are given by 8 and k. 

4. The non-linear part of the boundary-layer problem 
In the last section we did not have to use the solvability condition in its most 

general form because we began the analysis with the special solution (3.1). The 
general solution in the form of a differential rotation would not have led to a 
different result. With the choice of the same solution for q,, the solvability con- 
dition (3.10) cannot be satisfied unless the solution reduces to the special form 
(3.1). In this section, however, it will be shown that due to the action of the 
non-linear term in the boundary-layer equation, a differential rotation is induced 
in the interior. Since the eccentricity has only secondary importance in the non- 
linear part of the problem, we are not losing generality by restricting our atten- 
tion to the case of the spherical cavity. 

The inviscid equations for the interior 

(4-1) 
v .  qb2) = 0, 

2Q x qb2) + (w x r) . Vqr) + w x qh2) + Vpb2) = 0, 

allow a solution of the form 

(4.3) 

with arbitrary function f, since the component of rlz normal to o is of the order 
edE and can be neglected in this order. The boundary-layer problem in the 
second order is given by 
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The arbitrary function f will be determined by the solvability condition for the 
interior equations in the order e21/E. These equations have the following form, 
if we restrict ourselves for the moment to that part of the problem which is 
axisymmetric with respect to o, 

v.qp = 0, 3 (%+ 1) " x q p ' + V p p  = 0, (4.4) 

with the boundary condition n . qi2) + n . Cli2'15=o = 0. A consequence of (4.4) is 

0 .  vqy = 0. (4.5) 

Thus the part of the influx into the interior, n.  qi2)15=o, which is symmetric with 
respect to the axis and to  the equatorial plane, has to vanish at any distance from 
the axis. This condition alone will be sufficient to determine f, and we therefore 
shall solve only the axisymmetric part of the problem (4.3). 

Since the non-axisymmetric part of the inhomogeneity in (4.3) is doubly 
periodic around the axis, the corresponding part of the solvability condition for 
the interior equations in the order s2JE is generally fulfilled. For C? of the order 
1/E or for negative Q.a, this follows directly from the fact that no doubly 
periodic solutions of the homogeneous problem (3.9) can exist (see, for example, 
Greenspan 1964). 

We divide the solution of the boundary-layer problem (4.3) into two steps. 
First, we obtain the solution qa of the homogeneous equation together with the 
inhomogeneous boundary condition. Then we add the solution 4, of the in- 
homogeneous equation obeying the boundary condition #) = 0 on C. Since the 
axisymmetric part of the inhomogeneity in (4.3) is symmetric with respect to the 
equatorial plane, the influx into the interior has to vanish, 

SOrn 
n.q, - (2)  1 5 = o  = -n .Vx  nx$,''d{= -n .Vx  nx(QA+qB)d<= 0. (4.6) 

This condition will be sufficient to determine the function f. 
The solution qA is easily obtained by the same method as used in $3,  

nxijA+iqA = - [ n x ( w x r ) + i o x r ] f  exp(-K<). (4.7) 
r l )  

The corresponding influx into the interior is given by 

n.w 
-n.V x I O w  n x q,d< = i n .  V x n x (o x r) +- 

InJJf 

The solution of the equation for tiIj 

r-62 - 2 i  
K2 + 1) o . n] (n x qs + iijB) = [ - n x + in x (n x ] ( JI + JrI )  

(4.9) 
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is more laborious, and we shall assume for simplicity that $2. w can be neglected 
in comparison with w2. In  this case the inhomogeneous terms are given by 

[ - n x +in x (n x ] J, = [n x -in x (n x ] $,l'.Vqbl) 
= - { ~ [ w ,  x r - in x (w* x r)] w? . n} exp ( - (K+ + K- )  5)  

i6 
2K* 

- x[w*  x r-in x (m* x r ) ] o r f  .n- (exp [ - (K* + ~ ? ) 5 ] (  T w - - w .  n) 

+ exp - (K+  + IT-, ) 51 ( T w + w . n)), 
a 

[ - n x  + i n x ( n x ] J , , r  [ - n x  + i n ~ ( n x ] n . ( q ~ ~ ) + q ,  ) 
(lJ +' 

- 

Using the relation 
n . w  i 
4w2 -4w 

w*.n(w,xn) = - -wxn--+-nx((oxn)  (4.10) 

we obtain the solution of (4.9) satisfying the homogeneous boundary condition 
q, = 0, 

1 
[n x (w x r ) + i w  x r] nxq,+zq ,=- -  

4w2 
- .I 

The influx into the interior corresponding to this solution is 

0-15 
i8w21 n . w 14 

- n . V  x (6.1 x r) (4.11) 
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FIGT~RE 1. The difference of the angular velocity between the fluid and the spherical cavity 
divided by e2 as a function of the distance from the axis. 

Since the first term on the right side of (4.11) vanishes for any function D, 
only the imaginary part of D has to be calculated. According to condition (4.6) 
the function f ( 1 0  x rl/o) is given by 

(4.12) 

In  figure 1 the function f - fr is plotted. Since from the linear part of the problem 
o is determined to the second order by 

w = 1 - 1 6 2  2 9  (4.13) 

the figure shows the difference between the angular velocities of the fluid and the 
container divided by e2. Due to the critical circle of the linear boundary solution, 
at  which the boundary-layer thickness becomes divergent, a similar behaviour 
is shown by the function f .  Since this divergence, however, is only of the order 
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(n. o - +J)-*, we expect that the differential rotation will show a smooth profile 
due to the viscous effects in the interior which have been neglected in this analysis. 
In  the limit of vanishing E the profile f will be approached asymptotically. Ex- 
perimental evidence reported in the forthcoming paper by Malkus (1968) supports 
this contention. 

5. Steady fluid flow due to a tidal bulge 
In  this section we consider the problem of the steady flow of a homogeneous 

fluid inside a spheroidal shell which is deformed by time-independent forces. We 
assume that the shell is spinning with the constant angular velocity o, relative 
to an inertial system and that the deformation is time-independent with respect 
to the same system. The characteristic features of this problem can be exhibited 
by considering the simple case of a rotating spherical shell which is deformed into 
a spheroidal shell with negative ellipticity q* and an axis of symmetry defined by 
the constant unit vector t. Because of the geophysical significance of the problem, 
such a deformation is called a tidal bulge. Using the non-dimensional notation 
introduced in 9 2, the velocity field with constant vorticity, which satisfies the 
boundary condition 

q . n = O  on C, (5.1) 

The boundary condition for the tangential component of the velocity depending 
on the details of the tidal motion of the shell will not be completely satisfied by 
the flow (5.2)in general. A boundary-layer flow of the order 7" is induced and, due 
to the influx from the boundary, a change of the same order in the interior flow 
will be the result. In the following, however, we will neglect this effect?, assuming 
that 7" is very small compared with unity. 

Another boundary-layer problem of different order of magnitude is induced 
by the fact that the solution (5.3) satisfies the equations of motion only to the 
approximation in which the term 

y*t.k(t x k) x r (5.3) 

can be disregarded. In  this respect solution (5.2) is an anslogue of solution (2.14) 
in the precession problem, which satisfies (2.9) also only in the limit when 
(8 x k) x r can be neglected. Since the latter term and the term (5.3) have 
the same form, the analysis of the precession problem applies directly to the 
present problem, when T*(t. k)t is used in place of S2. The same considerations 
are valid for a spheroidal shell with small ellipticity q instead of the spherical 
shell. Hence the results (3.19) and (4.12) describe the flow inside a spheroidal shell 
with a tidal bulge when 8 is replaced by q*(t. k)t. 

t This problem has been recently attacked by Sness (1967). 
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6. A few remarks on the geophysical application 
In their first paper Stewartson & Roberts (1963) discussed the relevance of the 

precession problem to the liquid core inside the rigid mantle of the precessing 
earth. They concluded that the viscosity does not alter the result of the inviscid 
theory by Poinear6 (1910)’ who obtained a value of for E .  Owing to the non- 
linear terms of the boundary-layer equation, the motion in the liquid core devi- 
ates from PoincarB’s solution of constant vorticity even in the limit of vanishing 
viscosity. In  the case of the earth’s core, however, this effect is extremely small. 
The retrograde rotation of the order s2 fails by four orders of magnitude to account 
for the westward drift of the earth’s magnetic field, if the drift represents the 
relative motion of the core. 

Although the viscosity of the liquid core of the earth is not well known, the 
Ekman number for the core certainly is extremely small and probably is close 
to For this reason the stationary flow is likely to be unstable owing to the 
instability of the free shear layer, even though the amplitude s2 is very small, 
This suggests that the precession may be responsible for the wavelike processes 
which manifest themselves in the secular variation of the earth’s magnetic field 
according to recent proposals by Hide (1966) and Malkus (1967). 

The discussion of the effect of the tidal bulge on the motion of the earth’s core 
becomes complicated because the elastic properties of the lower mantle are not 
well known and the direction t of the tidal bulge doesn’t remain constant with 
respect to the inertial space. The latter difficulty can be removed if we neglect the 
fluctuating part. A rough estimate shows that the absolute value of the time 
average of the term (5.3) is of the order lo-*. Thus the flow caused by the tidal 
bulge has both the same form and the same order of magnitude as the flow 
caused by the precession. The effects, however, compensate each other partly 
since the direction of the average of q*(k x t) x kt. k is opposite to (k x S2) x k, 
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